Abstract
Traditional machine learning prediction methods usually only predict input parameters through a single model, so the problem of low prediction accuracy is common. Different predictive models extract different information for input, and combining different predictive models can make as much use as possible of all the information contained in the inputs. Therefore, this paper improves the existing oil temperature prediction method of offshore wind turbine gearboxes, and for the actual prediction effect of Supervisory Control And Data Acquisition (SCADA) data in this paper, Bayesian-optimized Light Gradient Boosting Machine (LightGBM) and eXtreme Gradient Boosting(XGBoost) machine learning models are selected to be combined. A method based on the Induced Ordered Weighted Average (IOWA) operator combination prediction model is thus proposed, with simulation results showing that the proposed model improves the accuracy of gearbox condition monitoring. The innovation of this article lies in considering the various negative impacts faced by actual offshore wind turbines and adopting a combination prediction model to improve the accuracy of gearbox condition monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.