Abstract

A kind of Modified Fuzzy C-Means (MFCM) clustering algorithm is presented to improve the problems of the conventional Fuzzy C-Means (FCM) clustering algorithm from three aspects: the way of clustering centre selection, application of the method of weighted dot density and the theory of information granularity. Then this new algorithm MFCM solves the problems suffer from FCM algorithm such as the sensitivity to initial value, the slow convergence speed, the possibility to fall into local optimal solution, the lost of best clustering number and equivalence partition and so on. Based on MFCM algorithm, a new condition division method for complex processes is proposed and applied to the glutamic acid fermentation process. The satisfactory simulation results are obtained and illustrated in the end of the paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.