Abstract

BackgroundThe optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual’s condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. A clear contrast can often be drawn between natural habitats and novel habitats, such as forest plantations and urban areas. In some species, males seem to change their sexual signals in these novel environments, but why this occurs and how it affects signal reliability is still poorly understood.ResultsThe relative size of sexual traits and level of immune responses were significantly lower for male palmate newts Lissotriton helveticus caught in pine and eucalyptus plantations compared to those caught in native forests, but there was no habitat-dependent difference in body condition (n = 18 sites, 382 males). The reliability with which sexual traits signalled body condition and immune responses was the same in all three habitats. Finally, we conducted a mesocosm experiment in which males were maintained in pine, eucalypt or oak infused water for 21 days. Males in plantation-like water (pine or eucalypt) showed significantly lower immune responses but no change in body condition. This matches the pattern seen for field-caught males. Unlike field-caught males, however, there was no relationship between water type and relative sexual trait size.ConclusionsPine and eucalyptus plantations are likely to be detrimental to male palmate newt because they are associated with reduced immune function and smaller sexual traits. This could be because ecological aspects of these novel habitats, such as high water turbidity or changes in male-male competition, drive selection for reduced investment into sexual traits. However, it is more probable that there are differences in the ease of acquisition, hence optimal allocation, of resources among habitats. Our mesocosm experiment also provides some evidence that water toxicity is a causal factor. Our findings offer insights into how plantations affect amphibian life histories, and how novel habitats might generate long-term selection for new resource allocation strategies in native species.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-016-0706-0) contains supplementary material, which is available to authorized users.

Highlights

  • The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual’s condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation

  • Sexual trait expression was highest in newts from oak forest, intermediate in pine plantations and much lower in those from eucalyptus plantations

  • PHA immune response was higher in pine than eucalyptus plantations

Read more

Summary

Introduction

The optimal allocation of resources to sexual signals and other life history traits is usually dependent on an individual’s condition, while variation in the expression of sexual traits across environments depends on the combined effects of local adaptation, mean condition, and phenotypic responses to environment-specific cues that affect resource allocation. Sexual selection drives the evolution of elaborate male traits that increase mating and/or fertilization success [1]. At the individual level there is abundant evidence that condition-dependence (sensu [5]) drives phenotypic plasticity in the expression of sexual traits (reviews: [6, 7]). This is assumed to be adaptive because males in better condition can afford to invest more into sexual traits because they pay lower marginal costs ([8] but see [9]). The survival costs of a given level of sexual trait expression, as with most life history traits, will vary across habitats [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call