Abstract

By utilizing condition monitoring information collected from wind turbine components, condition based maintenance (CBM) strategy can be used to reduce the operation and maintenance costs of wind power generation systems. The existing CBM methods for wind power generation systems deal with wind turbine components separately, that is, maintenance decisions are made on individual components, rather than the whole system. However, a wind farm generally consists of multiple wind turbines, and each wind turbine has multiple components including main bearing, gearbox, generator, etc. There are economic dependencies among wind turbines and their components. That is, once a maintenance team is sent to the wind farm, it may be more economical to take the opportunity to maintain multiple turbines, and when a turbine is stopped for maintenance, it may be more cost-effective to simultaneously replace multiple components which show relatively high risks. In this paper, we develop an optimal CBM solution to the above-mentioned issues. The proposed maintenance policy is defined by two failure probability threshold values at the wind turbine level. Based on the condition monitoring and prognostics information, the failure probability values at the component and the turbine levels can be calculated, and the optimal CBM decisions can be made accordingly. A simulation method is developed to evaluate the cost of the CBM policy. A numerical example is provided to illustrate the proposed CBM approach. A comparative study based on commonly used constant-interval maintenance policy demonstrates the advantage of the proposed CBM approach in reducing the maintenance cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.