Abstract

Mineral oil (MO) is the most popular insulating liquid that is used as an insulating and cooling medium in electrical power transformers. Indeed, for green energy and environmental protection requirements, many researchers introduced other oil types to study the various characteristics of alternative insulating oils using advanced diagnostic tools. In this regard, natural ester oil (NEO) can be considered an attractive substitute for MO. Although NEO has a high viscosity and high dielectric loss, it presents fire safety and environmental advantages over mineral oil. Therefore, the retrofilling of aged MO with fresh NEO is highly recommended for power transformers from an environmental viewpoint. In this study, two accelerated aging processes were applied to MO for 6 and 12 days to simulate MO in service for 6 and 12 years. Moreover, these aged oils were mixed with 80% and 90% fresh NEO. The dielectric strength, relative permittivity, and dissipation factor were sensed using a LCR meter and oil tester devices for all prepared samples to support the condition assessment performance of the oil mixtures. In addition, the electric field distribution was analyzed for a power transformer using the oil mixtures. Furthermore, the dynamic viscosity was measured for all insulating oil samples at different temperatures. From the obtained results, the sample obtained by mixing 90% natural ester oil with 10% mineral oil aged for 6 days is considered superior and achieves an improvement in dielectric strength and relative permittivity by approximately 43% and 48%, respectively, compared to fresh mineral oil. However, the dissipation factor was increased by approximately 20% but was at an acceptable limit. On the other hand, for the same oil sample, due to the higher molecular weight of the NEO, the viscosities of all mixtures were at a higher level than the mineral oil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.