Abstract

Condensation heat transfer coefficient of R134a was obtained in multi-port micro channel smooth and grooved flat tubes of automotive heat exchanger. The test consisted of two smooth and one grooved tube. The test range covered mass flux 490–1600 kg/m2 s, heat flux 5.5–19 kW/m2 and saturation temperature 51–68 °C. Results revealed that condensation heat transfer coefficient increased with an increment of mass flux, vapor quality and decreased with the increase of saturation temperature. The effect of heat flux on heat transfer coefficient was negligible. The grooved tube showed larger heat transfer coefficient than that of smooth tubes. A comparison of the present data of flat tube with existing correlations revealed that the heat transfer coefficient was not reasonably predicted, therefore new correlation was developed for heat transfer coefficient that predicted 86% data within ±30% with a mean error of 16%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call