Abstract

Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1) higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2) increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin II influences local chromatin structure to help maintain genome stability.

Highlights

  • Condensins are complexes which are well known for their roles in ensuring efficient global chromatin condensation during prophase of mitosis [1,2,3,4]

  • We have shown that the Drosophila Condensin II subunit, dCAP-D3, functions to regulate transcription in somatic cells during the later stages of development

  • We report that some of the most strongly regulated dCAP-D3 gene clusters are positioned near retrotransposons

Read more

Summary

Introduction

Condensins are complexes which are well known for their roles in ensuring efficient global chromatin condensation during prophase of mitosis [1,2,3,4]. Each complex contains SMC2 and SMC4 proteins which heterodimerize to form ATPases that act to constrain positive supercoils [5,6]. Mammalian Condensin I and II differ in their non-SMC subunits. Condensin I contains the kleisin, CAP-H, and two HEAT repeat proteins, CAP-D2 and CAP-G. Condensin II contains the kleisin, CAP-H2, and two HEAT repeat proteins, CAP-D3 and CAP-G2 (a CAP-G2 homolog has not been discovered in Drosophila). The two Condensin complexes bind to chromosomes differently and possess functions independent of one another [4,6,7,8,9,10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.