Abstract

The condensed state of mitotic chromosomes is crucial for faithful genome segregation. Key factors implicated in the formation of mitotic chromosomes are the condensin I and II complexes. In Drosophila, condensin I appears to play a major role in mitotic chromosome organization. To analyze its dynamic behavior, we expressed Barren, a condensin I non-Structural Maintenance of Chromosomes subunit, as a fully functional enhanced green fluorescent protein (EGFP) fusion protein in the female and followed it during early embryonic divisions. We find that, in Drosophila, Barren-EGFP associates with chromatin early in prophase concomitantly with the initiation of chromosome condensation. Barren-EGFP loading starts at the centromeric region from where it spreads distally reaching maximum accumulation at metaphase/early anaphase. Fluorescence Recovery After Photobleaching analysis indicates that most of the bound protein exchanges rapidly with the cytoplasmic pool during prometaphase/metaphase. Taken together, our results suggest that in Drosophila, condensin I is involved in the initial stages of chromosome condensation. Furthermore, the rapid turnover of Barren-EGFP indicates that the mechanism by which condensin I promotes mitotic chromosome organization is inconsistent with a static scaffold model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.