Abstract
The chromosomal condensin complex gives metaphase chromosomes structural stability. In addition, condensin is required for sister-chromatid resolution during their segregation in anaphase [1-7]. How condensin promotes chromosome resolution is poorly understood. Chromosome segregation during anaphase also fails after inactivation of topoisomerase II (topo II), the enzyme that removes catenation between sister chromatids left behind after completion of DNA replication [8, 9]. This has led to the proposal that condensin promotes DNA decatenation [3, 10, 11], but direct evidence for this is missing and alternative roles for condensin in chromosome resolution have been suggested [12-14]. Using the budding-yeast rDNA as a model, we now show that anaphase bridges in a condensin mutant are resolved by ectopic expression of a foreign (Chlorella virus) but not endogenous topo II. This suggests that catenation prevents sister-rDNA segregation but that yeast topo II is ineffective in decatenating the locus without condensin. Condensin and topo II colocalize along both rDNA and euchromatin, consistent with coordination of their activities. We investigate the physiological consequences of condensin-dependent rDNA decatenation and find that late decatenation determines the late segregation timing of this locus during anaphase. Regulation of decatenation therefore provides a means to fine tune the segregation timing of chromosomes in mitosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.