Abstract

We present experiments on the luminescence of excitons confined in a potential trap at milli-Kelvin bath temperatures under continuous-wave (cw) excitation. They reveal several distinct features like a kink in the dependence of the total integrated luminescence intensity on excitation laser power and a bimodal distribution of the spatially resolved luminescence. Furthermore, we discuss the present state of the theoretical description of Bose–Einstein condensation of excitons with respect to signatures of a condensate in the luminescence. The comparison of the experimental data with theoretical results with respect to the spatially resolved as well as the integrated luminescence intensity shows the necessity of taking into account a Bose–Einstein condensed excitonic phase in order to understand the behaviour of the trapped excitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call