Abstract

Multivalent ions can induce condensation of like-charged polyelectrolytes into compact states, a process that requires different ion valences for different polyelectrolyte species. In this work we examine the condensation behavior in binary anionic polyelectrolyte mixtures consisting of DNA coils and F-actin rods in the presence of monovalent, divalent, and trivalent ions. As expected, monovalent ions do not condense either component and divalent ions selectively condense F-actin rods out of the polyelectrolyte mixture. For trivalent ions, however, we observe a microphase separation between the two polyelectrolytes into coexisting finite-sized F-actin bundles and DNA toroids. Further, by increasing the DNA volume fraction in the mixture, condensed F-actin bundles can be completely destabilized, leading to only DNA condensation within the mixture. We examine a number of possible causes and propose a model based on polyelectrolyte competition for ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call