Abstract

Condensation of a vapor flow inside a horizontal rectangular duct, using the bottom plate as the only condensing surface, was experimentally investigated. The experimental measurements included condensate film thickness and heat transfer coefficients with R-113 and FC-72. The condensate film thickness, measured with an ultrasonic transducer, was used to obtain the local heat transfer coefficient. The heat transfer coefficient increased with increasing inlet vapor velocity. The rate of increase was enhanced noticeably after the appearance of interfacial waves. Within the limited range of the experimental variables, a correlation between St and RegL was developed by a linear regression analysis. However, because of the effect of the interfacial waves, instead of a single correlation for the entire range of RegL, two separate equations (one for the wave-free regime and another for the regime with waves) were found. Analytical predictions of heat transfer rates in the annular condensation regime require the proper modeling of the interfacial shear stress. A properly validated interfacial shear stress model with condensation is not yet available. The measurement of condensate film thickness at several axial locations opens the door for determining the local interfacial stress and, hence, a model for the interfacial shear stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call