Abstract

Aluminum substrate specimens are irradiated with nitrogen ions at various ion dose and ion energy levels in order to realize dropwise condensation on the specimen surfaces. Dropwise steam condensation initially occurs on these specimens, but the condensation mode changes into filmwise condensation. When the condensation mode changes to filmwise condensation, the heat transfer coefficient is measured to be approximately 40% lower than that predicted using the Nusselt theory; in addition, the color of the surface changes from yellow-brown to silver-white. This surface color change is the result of the hydrolysis reaction between the condensate and the nitrogen ion-implanted aluminum surface. Non-condensable gas is generated by the hydrolysis reaction, and this non-condensable gas diminishes the heat transfer coefficient. In addition, the material composition of the specimen’s surface changes and causes the transition of the condensation mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.