Abstract

We study stochastic particle systems with stationary product measures that exhibit a condensation transition due to particle interactions or spatial inhomogeneities. We review previous work on the stationary behaviour and put it in the context of the equivalence of ensembles, providing a general characterization of the condensation transition for homogeneous and inhomogeneous systems in the thermodynamic limit. This leads to strengthened results on weak convergence for subcritical systems, and establishes the equivalence of ensembles for spatially inhomogeneous systems under very general conditions, extending previous results which were focused on attractive and finite systems. We use relative entropy techniques which provide simple proofs, making use of general versions of local limit theorems for independent random variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.