Abstract

We study Bose-Einstein Condensation (BEC) in the Infinite-Range Hopping Bose-Hubbard model for repulsive on-site particle interaction in presence of ergodic random one-site potentials with different distributions. We show that the model is exactly soluble even if the on-site interaction is random. But in contrast to the non-random case, we observe here new phenomena: instead of enhancement of BEC for perfect bosons, for constant on-site repulsion and discrete distributions of the single-site potential there is suppression of BEC at some fractional densities. We show that this suppression appears with increasing disorder. On the other hand, the BEC suppression at integer densities may disappear, if disorder increases. For a continuous distribution we prove that the BEC critical temperature decreases for small on-site repulsion while the BEC is suppressed at integer values of density for large repulsion. Again, the threshold for this repulsion gets higher, when disorder increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.