Abstract

R-404A condensation heat transfer and pressure drop data are provided for 7.0[Formula: see text]mm O.D. smooth and microfin tubes. Tests were conducted for a range of mass fluxes (from 80 to 200[Formula: see text]kg/m2s) and quality (from 0.2 to 0.8). The heat flux was 6[Formula: see text]kW/m2 and saturation temperature was 45[Formula: see text]C. It was found that both the heat transfer enhancement factor and the pressure drop penalty factor increase as mass flux increases. The range of pressure drop penalty factor (0.99–1.27) was smaller than that of heat transfer enhancement factor (1.21–1.96). Smooth tube heat transfer coefficients and pressure drops are reasonably predicted by Shah [An improved and extended general correlation for heat transfer during condensation in plain tubes, Int. J. HVAC&R Res. 15 (2009) 889–913] and Jung and Radermacher [Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants, Int. J. Heat Mass Transfer 32 (1989) 2435–2446] correlation, respectively. For the microfin tube, however, all the existing correlations do not adequately predict the present data. Poor predictions may be attributed to the lack of R-404A and low mass flux data in their database.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.