Abstract
The heat transfer coefficients (HTCs) of NH3 are higher than of HFCs and hydrocarbons during the condensation within plate heat exchangers (PHEs) mainly due to its favorable transport properties. NH3/H2O has a large temperature glide, and its heat transfer is dependent on mass transfer. Few models have been specifically developed for NH3 and NH3/H2O condensation in PHEs. This paper presents heat transfer and pressure drop experiments for partial condensation. The calculation method for condensation HTCs and frictional pressure drop is introduced. The working fluids are pure NH3 and NH3/H2O with a weight concentration of 96%. For a mass flux of 62 kgm-2s-1, the HTCs of NH3 increase from 10 to 20 kWm-2K-1 with vapor quality. The apparent HTCs of NH3/H2O are significantly lower than NH3 at high vapor qualities because of mass transfer resistance. Condensation pressure level has a slight influence on HTCs and frictional pressure drop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.