Abstract

Abstract This study numerically investigated the condensation heat transfer and flow characteristics of refrigerant R134a in a rectangular minichannel. Three-dimensional simulations were carried out at different mass fluxes, vapor qualities, and gravity conditions using the volume-of-fluid (VOF) model, a turbulence model, and a phase transition model. The effects of various parameters on the surface heat transfer coefficient and the frictional pressure gradient are investigated. The condensation process was found to be enhanced due to the increase of vapor quality and mass flow rate, while the frictional pressure gradient was found to decrease with the decrease of vapor quality and mass flow rate. Simulation results revealed that the liquid film tends to accumulate along the corner of the cross section of the minichannel. Furthermore, the thickness of the liquid film was found to increase with the decrease of mass flux and vapor quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.