Abstract

The extensive control of spin makes spintronics a promising candidate for future scalable quantum devices. For the generation of spin-superfluid systems, a detailed understanding of the build-up of coherence and relaxation is necessary. However, to determine the relevant parameters for robust coherence properties and faithfully witnessing thermalization, the direct access to space- and time-resolved spin observables is needed. Here, we study the thermalization of an easy-plane ferromagnet employing a homogeneous one-dimensional spinor Bose gas. Building on the pristine control of preparation and readout we demonstrate the dynamic emergence of long-range coherence for the spin field and verify spin-superfluidity by experimentally testing Landau's criterion. We reveal the structure of the emergent quasi-particles: one 'massive'(Higgs) mode, and two 'massless' (Goldstone) modes - a consequence of explicit and spontaneous symmetry breaking, respectively. Our experiments allow for the first time to observe the thermalization of an easy-plane ferromagnetic Bose gas; we find agreement for the relevant momentum-resolved observables with a thermal prediction obtained from an underlying microscopic model within the Bogoliubov approximation. Our methods and results pave the way towards a quantitative understanding of condensation dynamics in large magnetic spin systems and the study of the role of entanglement and topological excitations for its thermalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call