Abstract

We investigate the Bose-Einstein condensation of Fermionic pairs in a uniform two-component Fermi gas obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy gap. We analyze the condensate fraction in the crossover from the Bardeen-Cooper-Schrieffer (BCS) state of weakly-interacting Cooper pairs to the Bose-Einstein Condensate (BEC) of molecular dimers. By using the local density approximation we study confined Fermi vapors of alkali-metal atoms for which there is experimental evidence of condensation also on the BCS side of the Feshbach resonance. Our theoretical results are in agreement with these experimental data and give the behavior of the condensate on both sides of the Feshbach resonance at zero temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.