Abstract

Developing functional materials integrating multi-tasking oil/water separation performances is significant but challenging for the remediation of large-scale oil spills causing pernicious environmental damages. Herein, a novel Concus Finn Capillary driven oil sorbent (OSCPF) fabricated by aligning superhydrophobic cruciate polyester fibers based on yarn spinning mechanism is designed to realize the clean-up of oil spills and various oil/water mixtures at high speeds. Instantaneous oil diffusion is achieved by abrupt Concus Finn Capillary driven oil-flows along aligned channels. This advance reduces the penetrating time for viscous crude oils by 95.00% comparing with that of non-oriented circular polyester fibers. The OSCPF possess great oil sorption capacity of 54.36–124.71 g/g and can separate oils from immiscible oil/water mixtures, including seawater, soap-water, CuCl2-water, and KMnO4-water, and surfactant-stabilized O/W emulsions by the way of adsorption with satisfactory separation efficiency (99.41–99.83%). Especially, the OSCPF is effectively used to enclose oil spills to prevent rapid oil diffusion and in-situ continuously collect the spillages from water surface and underwater by pumping device with recovery rates of 15,727–104,227 L·m−2·h−1. Considering the unique structural design, fast oil sorption speed, and low operating cost, this work provides a prospective oil remover addressing the remediation of catastrophic multi-tasking oil/water pollutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call