Abstract
Data privacy is a major concern in industries such as healthcare or finance. The requirement to safeguard privacy is essential to prevent data breaches and misuse, which can have severe consequences for individuals and organisations. Federated learning is a distributed machine learning approach where multiple participants collaboratively train a model without compromising the privacy of their data. However, a significant challenge arises from the differences in feature spaces among participants, known as non-IID data. This research introduces a novel federated learning framework employing fuzzy cognitive maps, designed to comprehensively address the challenges posed by diverse data distributions and non-identically distributed features in federated settings. The proposal is tested through several experiments using four distinct federation strategies: constant-based, accuracy-based, AUC-based, and precision-based weights. The results demonstrate the effectiveness of the approach in achieving the desired learning outcomes while maintaining privacy and confidentiality standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.