Abstract
Inertial measurement units (IMUs) are being recognized in clinical and rehabilitation settings for their ability to assess movement-related disorders of the spine for better guidance of treatment-planning and tracking of recovery. This study evaluated the Mbientlab MetaMotionR IMUs, relative to Vicon motion capture equipment in measuring local dynamic stability of the spine (quantified using maximum finite-time Lyapunov exponent; λmax), lumbopelvic coordination (quantified using mean absolute relative phase; MARP), and intersegmental motor variability (quantified using deviation phase; DP) of lumbopelvic segments in 10 participants during 35 cycles of repetitive spine flexion–extension (FE). Intraclass correlations were strong between systems when using both the FE angle time-series and the sum of squares (SS) time-series to measure local dynamic stability (0.807 ≤ICC2,1λmax,FE ≤ 0.919; 0.738 ≤ ICC2,1λmax,SS ≤ 0.868), sagittal-plane lumbopelvic coordination (0.961 ≤ICC2,1MARP ≤ 0.963), and sagittal-plane lumbopelvic variability (0.961 ≤ICC2,1DP ≤ 0.963). It was concluded that the MetaMotionR IMUs can be reliably used for measuring features associated with spine movement quality and motor control during a repetitive FE task. Future work will assess the reliability of sensor placement, performance during multi-directional movements, and ability to discern clinical and healthy populations based on assessment of movement quality and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.