Abstract

Using RGB-D cameras as an alternative motion capture device can be advantageous for biomechanical spine motion assessments of movement quality and dysfunction due to their lower cost and complexity. In this study, we evaluated RGB-D camera performance relative to gold-standard optoelectronic motion capture equipment. Twelve healthy young adults (6M, 6F) were recruited to perform repetitive spine flexion-extension, while wearing infrared reflective marker clusters placed over their T10-T12 spinous processes and sacrum, and motion capture data were recorded simultaneously by both systems. Custom computer vision algorithms were developed to extract spine angles from depth data. Root mean square error (RMSE) was calculated for continuous Euler angles, and intraclass correlation coefficients (ICC2,1) were calculated between minimum and maximum angles and range of motion in all movement planes. RMSE was low (RMSE ≤ 2.05°) and reliability was good to excellent (0.849 ≤ ICC2,1 ≤ 0.979) across all movement planes. In conclusion, the proposed algorithm for tracking 3D lumbar spine motion during a sagittal movement task from one RGB-D camera is reliable in comparison to gold-standard motion tracking equipment. Future research will investigate accuracy and validity in a wider variety of movements, and will also investigate the development of novel methods to measure spine motion without using infrared reflective markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call