Abstract

This paper presents a novel concurrent topology optimization approach for finding the optimum topologies of macrostructures and their corresponding parameterized lattice microstructures in an integrated manner. Considering the manufacturability of the structure designs and computational efficiency, additional parameters are introduced to define the microstructure unit cell patterns and their non-uniform distribution, which avoids expensive iterative numerical homogenization calculations during topology optimization and results in an easier modelling of structure designs as well. It is worth mentioning that the equivalent properties of material microstructures serve as a link between the macro and the micro scale with the help of homogenization theory and the Porous Anisotropic Material with Penalization (PAMP) model. Besides, sensitivities of global structure compliance with respect to the pseudo-density variables and the microstructure parameter variables are derived, respectively. Moreover, several numerical examples are presented and reasonable solutions have been obtained to demonstrate the efficiency of the proposed method. Finally, mechanical testing is conducted to investigate the better performance of the optimized structure which is fabricated by 3D printing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.