Abstract

The basis for multiple representations of equivalent frequency ranges in auditory cortex was studied with physiological and anatomical methods. Our goal was to trace the convergence of thalamic, commissural, and corticocortical information upon two tonotopic fields in the cat, the primary auditory cortex (AI) and the anterior auditory field (AAF). Both fields are among the first cortical levels of processing. After neurophysiological mapping of characteristic frequency, we injected different retrograde tracers at separate, frequency-matched loci in AI and AAF. We found differences in their projections that support the notion of largely segregated parallel processing streams in the auditory thalamus and cerebral cortex. In each field, ipsilateral cortical input amounts to approximately 70% of the number of cells projecting to an isofrequency domain, while commissural and thalamic sources are each approximately 15%. Labeled thalamic and cortical neurons were concentrated in tonotopically predicted regions and in smaller loci far from their spectrally predicted positions. The few double-labeled thalamic neurons (<2%) are consistent with the hypothesis that information to AI and AAF travels along independent processing streams despite widespread regional overlap of thalamic input sources. Double labeling is also sparse in both the corticocortical and commissural systems ( approximately 1%), confirming their independence. The segregation of frequency-specific channels within thalamic and cortical systems is consistent with a model of parallel processing in auditory cortex. The global convergence of cells outside the targeted frequency domain in AI and AAF could contribute to context-dependent processing and to intracortical plasticity and reorganization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.