Abstract

BackgroundZyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5′-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell. Clinically, treatment with Zyflamend and/or metformin (activators of AMPK) had benefits in castrate-resistant prostate cancer patients who no longer responded to treatment. Two predominant upstream kinases are known to activate AMPK: liver kinase B1 (LKB1), a tumor suppressor, and calcium-calmodulin kinase kinase-2 (CaMKK2), a tumor promotor over-expressed in many cancers. The objective was to interrogate how Zyflamend activates AMPK by determining the roles of LKB1 and CaMKK2.MethodsAMPK activation was determined in CWR22Rv1 cells treated with a variety of inhibitors of LKB1 and CaMKK2 in the presence and absence of Zyflamend, and in LKB1-null HeLa cells that constitutively express CaMKK2, following transfection with wild type LKB1 or catalytically-dead mutants. Upstream regulation by Zyflamend of LKB1 and CaMKK2 was investigated targeting protein kinase C-zeta (PKCζ) and death-associated protein kinase (DAPK), respectively.ResultsZyflamend’s activation of AMPK appears to be LKB1 dependent, while simultaneously inhibiting CaMKK2 activity. Zyflamend failed to rescue the activation of AMPK in the presence of pharmacological and molecular inhibitors of LKB1, an effect not observed in the presence of inhibitors of CaMKK2. Using LKB1-null and catalytically-dead LKB1-transfected HeLa cells that constitutively express CaMKK2, ionomycin (activator of CaMKK2) increased phosphorylation of AMPK, but Zyflamend only had an effect in cells transfected with wild type LKB1. Zyflamend appears to inhibit CaMKK2 by DAPK-mediated phosphorylation of CaMKK2 at Ser511, an effect prevented by a DAPK inhibitor. Alternatively, Zyflamend mediates LKB1 activation via increased phosphorylation of PKCζ, where it induced translocation of PKCζ and LKB1 to their respective active compartments in HeLa cells following treatment. Altering the catalytic activity of LKB1 did not alter this translocation.DiscussionZyflamend’s activation of AMPK is mediated by LKB1, possibly via PKCζ, but independent of CaMKK2 by a mechanism that appears to involve DAPK.ConclusionsTherefore, this is the first evidence that natural products simultaneously and antithetically regulate upstream kinases, known to be involved in cancer, via the activation of AMPK.

Highlights

  • Zyflamend, a blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5′-adenosine monophosphate-activated protein kinase (AMPK), a master energy sensor of the cell

  • AMPK activation by calmodulin kinase kinase-2 (CaMKK2) in the presence and absence of Zyflamend in CWR22Rv1 cells Zyflamend significantly increased the phosphorylation of AMPK (Thr172) (Fig. 3A and B) and its downstream target acetyl CoA carboxylase (ACC) (Ser79) (Fig. 3C and D), results unaffected by pretreatment with the CaMKK2 inhibitor STO-609 (Fig. 3A-D, lane 4/bar 4)

  • To confirm that the activation of AMPK by Zyflamend is independent of CaMKK2, cells were pre-treated with the calcium chelators BAPTA-AM and Ethylene glycol-bis(β-aminoethyl ether)-N (EGTA), as CaMKK2 activation is dependent upon intracellular calcium

Read more

Summary

Introduction

A blend of herbal extracts, effectively inhibits tumor growth using preclinical models of castrate-resistant prostate cancer mediated in part by 5′-adenosine monophosphate-activated protein kinase (AMPK) , a master energy sensor of the cell. Zyflamend inhibits signaling pathways of inflammation, affects cell survival by enhancing apoptotic and tumor suppressor genes, epigenetically modifies histones, down regulates the androgen receptor and influences the energetics of the cell. The latter pathways are critically important in cancer as rapidly dividing cells rely on the increased synthesis of macromolecules (lipids, proteins, nucleotides, etc)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.