Abstract

Silk, a popular biomaterial, is used as a greener alternative of toxic reducing agent in biocompatible graphene synthesis. However, silk often forms gel uncontrollably due to its heavy-chain molecular weight and faces significant challenges in the reduction, stabilization, and dispersion process of graphene. In this contribution, we report a rapid chemical synthesis approach for a low-molecular-weight silk-inspired polymer via ring-opening and microwave-assisted Diels-Alder-aided step-growth polymerizations. This synthetic polymer with periodic sequences of hydrophilic and hydrophobic moieties not only reduces graphene oxide efficiently but also enhances the dispersibility of hydrophobic reduced graphene oxide in aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call