Abstract
This paper reports on a study involving the adaptation of an advanced aeroelastic analysis program to run concurrently on a shared memory multiple processor computer. The program uses a three-dimensional compressible unsteady aerodynamic model and blade normal modes to calculate aeroelastic stability and response of propfan blades. The identification of the computational parallelism within the sequential code and the scheduling of the concurrent subtasks to minimize processor idle time are discussed. Processor idle time in the calculation of the unsteady aerodynamic coefficients was reduced by the simple strategy of appropriately ordering the computations. Speedup and efficiency results are presented for the calculation of the matched flutter point of an experimental propfan model. The results show that efficiencies above 70% can be obtained using the present implementation with seven procesors. The parallel computational strategy described here is also applicable to other aeroelastic analysis procedures based on panel methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.