Abstract
Abstract Wave energy converters (WECs) are a promising candidate for meeting the increasing energy demands of today’s society. It is known that the sizing and power take-off (PTO) control of WEC devices have a major impact on their performance. In addition, to improve power generation, WECs must be optimally deployed within a farm. While such individual aspects have been investigated for various WECs, potential improvements may be attained by leveraging an integrated, system-level design approach that considers all of these aspects. However, the computational complexity of estimating the hydrodynamic interaction effects significantly increases for large numbers of WECs. In this article, we undertake this challenge by developing data-driven surrogate models using artificial neural networks and the principles of many-body expansion. The effectiveness of this approach is demonstrated by solving a concurrent plant (i.e., sizing), control (i.e., PTO parameters), and layout optimization of heaving cylinder WEC devices. WEC dynamics were modeled in the frequency domain, subject to probabilistic incident waves with farms of 3, 5, 7, and 10 WECs. The results indicate promising directions toward a practical framework for array design investigations with more tractable computational demands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.