Abstract

AbstractPolymerization of nucleic acids in biology utilizes 5′‐nucleoside triphosphates (NTPs) as substrates. The prebiotic availability of NTPs has been unresolved and other derivatives of nucleoside‐monophosphates (NMPs) have been studied. However, this latter approach necessitates a change in chemistries when transitioning to biology. Herein we show that diamidophosphate (DAP), in a one‐pot amidophosphorylation‐hydrolysis setting converts NMPs into the corresponding NTPs via 5′‐nucleoside amidophosphates (NaPs). The resulting crude mixture of NTPs are accepted by proteinaceous‐ and ribozyme‐polymerases as substrates for nucleic acid polymerization. This phosphorylation also operates at the level of oligonucleotides enabling ribozyme‐mediated ligation. This one‐pot protocol for simultaneous generation of NaPs and NTPs suggests that the transition from prebiotic‐phosphorylation and oligomerization to an enzymatic processive‐polymerization can be more continuous than previously anticipated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.