Abstract

Electric vehicles still account for a small share of the total amount of cars on the road. One of the major issues preventing a larger uptake is their higher upfront cost compared to petrol cars. We aim to address this issue by investigating a module-based product-family approach to take full advantage of economy-of-scale strategies, reducing research, development, and production costs of electric vehicles. This paper instantiates a concurrent design optimization framework, whereby diffierent vehicle types share multiple modular powertrain components, whose size is jointly optimized to minimize the overall operational costs instead of being individually tailored. In particular, we focus on sizing battery and electric motors for a family of vehicles equipped with in-wheel motors. First, we identify a convex model of the powertrain, capturing the impact of modules’ sizing and multiplicity on the mechanical power demand and the energy consumption of the vehicles. Second, we frame the concurrent powertrain design and operation problem as a second-order conic program that can be efficiently solved with global optimality guarantees. Finally, we showcase our framework for a family of three different vehicles: a city car, a compact car, and an SUV. Our results show that concurrently optimizing shared components increases the operational costs by 3.2% compared to individually tailoring them to each vehicle, a value that could be largely overshadowed by the benefits stemming from using the same components for the entire product family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.