Abstract

We have generated a hybrid transgenic mouse line overexpressing both ornithine decarboxylase (ODC) and spermidine/spermine N1-acetyltransferase (SSAT) under the control of the mouse metallothionein (MT) I promoter. In comparison with singly transgenic animals overexpressing SSAT, the doubly transgenic mice unexpectedly displayed much more striking signs of activated polyamine catabolism, as exemplified by a massive putrescine accumulation and an extreme reduction of hepatic spermidine and spermine pools. Interestingly, the profound depletion of the higher polyamines in the hybrid animals occurred in the presence of strikingly high ODC activity and tremendous putrescine accumulation. Polyamine catabolism in the doubly transgenic mice could be enhanced further by administration of zinc or the polyamine analogue N1,N11-diethylnorspermine. In tracer experiments with [14C]spermidine we found that, in comparison with syngenic animals, both MT-ODC and MT-SSAT mice possessed an enhanced efflux mechanism for hepatic spermidine. In the MT-ODC animals this mechanism apparently operated in the absence of measurable SSAT activity. In the hybrid animals, spermidine efflux was stimulated further in comparison with the singly transgenic animals. In spite of a dramatic accumulation of putrescine and a profound reduction of the spermidine and spermine pools, only marginal changes were seen in the level of ODC antizyme. Even though the hybrid animals showed no liver or other organ-specific overt toxicity, except an early and permanent loss of hair, their life span was greatly reduced. These results can be understood from the perspective that catabolism is the overriding regulatory mechanism in the metabolism of the polyamines and that, even under conditions of severe depletion of spermidine and spermine, extremely high tissue pools of putrescine are not driven further to replenish the pools of the higher polyamines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.