Abstract

In this paper, a parametric level-set-based topology optimization framework is proposed, to concurrently optimize structural topology at the macroscale as well as the infill material properties at the mesoscale. With the parametric level set framework, both the boundary evolution and the material property optimization during the optimization process are driven by the Method of Moving Asymptotes (MMA) optimizer, which is more efficient than the PDE-driven level set approach when handling nonlinear problems with multiple constraints. Rather than using a radial basis function (RBF) for the level set parameterization, a new type of cardinal basis function (CBF) was constructed as the kernel function for the proposed parametric level set approach. With this CBF kernel function, the bounds of the design variables can be defined explicitly, which is a great advantage compared with the RBF-based level set method. A variational approach was conducted to regulate the level set function to be a distance-regularized shape for a better material property interpolation accuracy and higher design robustness. With the embedded distance information from the level set model, boundary layer and the infill can be naturally discriminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.