Abstract

The simultaneous surface and internal measurements from a chemically modified cortical bovine bone suffering a plastic range deformation are presented. Since the bone is an anisotropic structure, its mechanical response could be modified if its organic or inorganic phases change. The latter could result in high plastic deformations, where the interferometrical signal from an optical analysis is easily de-correlated. In this work, digital holography interferometry (DHI) and Fourier domain optical coherence tomography (FD-OCT) are used to analyze the plastic range deformation of the bone under compression. The simultaneous use of these two optical methods gives information even when one of them de-correlates. The surface results retrieved with DHI show the high anisotropy of the bone as a continuously increasing displacement field map. Meanwhile, the internal information obtained with FD-OCT records larger deformations at different depths. Due to the optical phase, it is possible to complement the measurements of these two methods during the plastic deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call