Abstract
AbstractAuroral emissions reflect energy dissipation in the atmosphere, while the energy mostly originates from the magnetospheric dynamics of the planet. In the Earth's magnetosphere, the interaction between the solar wind and the terrestrial magnetic field produces magnetic reconnection ultimately causing the appearance of auroras in the polar regions. In this study, we revisit two reconnection events previously identified using ESA Cluster observations during conditions of moderate geomagnetic activity, in the magnetotail. We compare these in situ detections with simultaneous global auroral images from the NASA‐IMAGE satellite and ionospheric convection measurements from SuperDARN. We show for the first time a direct correspondence between the electric voltage estimated at ionospheric altitude and the reconnection rate at the reconnection site. We compute the total auroral precipitation power and compare it to the energy released from the reconnection site. We deduce that the precipitated electron power of the aurora and the electron energy deposition rate from the reconnection site are of the same order of magnitude, which means that the thermal energy released by reconnection is primarily transferred to the ionosphere and contributes to the auroral activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.