Abstract

There is accumulating evidence that the number of multiple-nucleotide substitutions (MNS) occurring in closely spaced sites in eukaryotic genomes is significantly higher than would be predicted from the random accumulation of independently generated single-nucleotide substitutions (SNS). Although this excess can in principle be accounted for by the concept of transient hypermutability, a general mutational signature of concurrent MNS mutations has not so far been evident. Employing a dataset (N = 449) of "concurrent" double MNS mutations causing human inherited disease, we have identified just such a mutational signature: concurrently generated double MNS mutations exhibit a >twofold lower transition/transversion ratio (termed RTs/Tv ) than independently generated de novo SNS mutations (<0.80 vs. 2.10; P = 2.69 × 10(-14) ). We replicated this novel finding through a similar analysis employing two double MNS variant datasets with differing abundances of concurrent events (150,521 variants with both substitutions on the same haplotypic lineage vs. 94,875 variants whose component substitutions were on different haplotypic lineages) plus 5,430,874 SNS variants, all being derived from the whole-genome sequencing of seven Chinese individuals. Evaluation of the newly observed mutational signature in diverse contexts provides solid support for the postulated role of translesion synthesis DNA polymerases in transient hypermutability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.