Abstract

Conventional nondegenerate perturbation theory for some nth state starts with the corresponding unperturbed state. The present formulation yields recursively perturbation expansions for any bound state using the sole information of the unperturbed ground state. Logarithmic perturbation theory is exploited along with supersymmetric quantum mechanics to achieve this end. As the method involves ground-state perturbations of a series of supersymmetric Hamiltonians, concern about nodal shifts of targeted excited states arises only at the ultimate step, thus, minimizing considerably the labor of clumsy computations involved in dealing with excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.