Abstract

This study examines equilibrium behaviour and negotiation protocol design for a class of systems composed of multiple, non-cooperative, agents. The agents modelled as finite-state transition systems, are autonomous, and are interacting ‘concurrently’ aiming at achieving individual tasks specified in temporal logic. Each agent has its own preferences over outcomes of its interaction with others. The agents’ goals and preferences are neither perfectly aligned nor necessarily opposing. The authors reason about agent behaviours in such a system, by formulating a concurrent multi-agent game with infinitely many stages. To enable the synthesis of strategies, they develop a negotiation protocol which ensures that under a proper design of preferences and tasks, the mutually accepted plan is a Pareto optimal pure Nash equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.