Abstract
Directly comparing the motion and form processing in neurologic disorders has remained difficult due to the limitations in the experimental stimulus. In the current study, motion and form processing in amblyopia was characterized using random dot stimuli in different noise levels to parse out the effect of local and global processing on motion and form perception. A total of 17 amblyopes (8 anisometropic and 9 strabismic), and 12 visually normal subjects monocularly estimated the global direction of motion and global orientation in random dot kinematograms (RDK) and Glass patterns (Glass), whose directions/orientations were drawn from normal distributions with a range of means and variances that served as external noise. Direction/orientation discrimination thresholds were measured without noise first then variance threshold was measured at the multiples of the direction/orientation threshold. The direction/orientation and variance thresholds were modelled to estimate internal noise and sampling efficiency parameters. Overall, the thresholds for Glass were higher than RDK for all subjects. The thresholds for both Glass and RDK were higher in the strabismic eyes compared with the fellow and normal eyes. On the other hand, the thresholds for anisometropic amblyopic eyes were similar to the normal eyes. The worse performance of strabismic amblyopes was best explained by relatively low sampling efficiency compared with other groups (P < 0.05). A deficit in global motion and form perception was only evident in strabismic amblyopia. Contrary to the dorsal stream deficiency hypothesis assumed in other developmental disorders, deficits were present in both motion (dorsal) and form (ventral) processing.
Highlights
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights
A total of 17 amblyopes (8 anisometropic and 9 strabismic), and 12 visually normal subjects monocularly estimated the global direction of motion and global orientation in random dot kinematograms (RDK) and Glass patterns (Glass), whose directions/orientations were drawn from normal distributions with a range of means and variances that served as external noise
A deficit in global motion and form perception was only evident in strabismic amblyopia
Summary
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details of how to contact us. Comparing the motion and form processing in neurologic disorders has remained difficult due to the limitations in the experimental stimulus. Motion and form processing in amblyopia was characterized using random dot stimuli in different noise levels to parse out the effect of local and global processing on motion and form perception
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.