Abstract

ABSTRACTData collection process in most observational and experimental studies yield different types of variables, leading to the use of joint models that are capable of handling multiple data types. Evaluation of various statistical techniques that have been developed for mixed data in simulated environments requires concurrent generation of multiple variables. In this article, I present an important augmentation to a unified framework proposed in our previously published work for simultaneously generating binary and nonnormal continuous data given the marginal characteristics and correlation structure, via fifth-order power polynomials that are known to extend the area covered in the skewness-elongation plane and to provide a better approximation to the probability density function of the continuous variables. I evaluate how well the improved methodology performs in comparison to the original one, in a simulated setting with illustrations of algorithmic steps. Although the relative gains for the associational quantities are not substantial, the augmented version appears to better capture the marginal quantities that are pertinent to the higher-order moments, as indicated by very close resemblance between the specified and empirically computed quantities on average.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.