Abstract

Ancient sister lakes are considered to be ancient lakes lying in close geographic proximity, sharing a related origin and significant time of coexistence, usually having hydrological connection as well as a balanced degree of faunal overlap and distinctness. A paradigm for studying sister lake relationships are the ancient lakes Ohrid and Prespa in the Balkans, which are characterized by high degrees of endemicity. Three general patterns of endemic species can be distinguished for these lakes: (1) taxa that are endemic to either lake, with no close relatives in the respective sister lake, (2) closely related but distinct endemic taxa in both lakes (sister species) and (3) shared endemic taxa occurring in both lakes. In the present paper, two endemic freshwater pulmonate gastropod species, Radix relicta (Lake Ohrid) and R. pinteri (Lake Prespa), are used to study the evolution of presumed sister species based on biogeographical and comparative DNA data from world-wide Radix taxa. Phylogenetic, phylogeographical and parametric bootstrap analyses all suggest a sister group relationship of R. relicta and R. pinteri (pattern 2 of endemic diversity). Sister to these two taxa is the widespread R. ampla, which does not occur in the vicinity of lakes Ohrid and Prespa. The southern feeder spring complexes of Lake Ohrid are inhabited by another lineage (Radix sp. 1), which resembles Radix relicta in morphology/anatomy. For Lake Prespa, the widespread R. auricularia was reported in addition to the endemic R. pinteri. Comparative phylogenetic data favour a western Adriatic zoogeographical affinity of lakes Ohrid and Prespa over an Aegean-Anatolian faunal connection. The status of lakes Ohrid and Prespa as sister lakes is evaluated in the light of current knowledge on gastropod speciation and endemism in these hotspots of biodiversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call