Abstract
Gravitational-wave parameter estimation for compact binary signals typically relies on sequential estimation of the properties of the detector Gaussian noise and of the binary parameters. This procedure assumes that the noise variance, expressed through its power spectral density, is perfectly known in advance. We assess the impact of this approximation on the estimated parameters by means of an analysis that simultaneously estimates the noise and compact binary parameters, thus allowing us to marginalize over uncertainty in the noise properties. We compare the traditional sequential estimation method and the new full marginalization method using events from the GWTC-3 catalog. We find that the recovered signals and inferred parameters agree to within their statistical measurement uncertainty. At current detector sensitivities, uncertainty about the noise power spectral density is a subdominant effect compared to other sources of uncertainty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.