Abstract

In this work, we consider detection of errors in polynomial, dual, and normal bases arithmetic operations. Error detection is performed by recomputing with the shifted operand method, while the operation unit is in use. This scheme is efficient for pipelined architectures, particularly systolic arrays. Additionally, one semisystolic multiplier for each of the polynomial, dual, type I, and type II optimal normal bases is presented. The results show that for having better or similar space and time overheads compared to a number of related previous work, the multipliers have generally a higher error-detection capability, e.g., the error-detection capability of the RESO-based scheme for single and multiple stuck-at faults in a polynomial basis multiplier is 100 percent. Finally, we also comment on how RESO can be used for concurrent error correction to deal with transient faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.