Abstract

Haematococcus pluvialis has attracted interest as a bio-platform for producing omega-3 fatty acids (ω-3 FA) and astaxanthin that have a great potential as anti-inflammatory drugs. This study aimed to concurrently enhance the CO2 fixation and the productivities of ω-3 FA and astaxanthin, which have been difficult to achieve because of the dissimilar culture methods for each goal, via calcium-mediated homeoviscous adaptation and biomineralization. As a result of 3 mM of Ca2+ addition, ω-3 FA content was improved by 31% due to Ca2+-induced homeoviscous adaptation. Biomineralization was promoted by the extracellular carbonic anhydrase, which resulted in 46.3% improvement in CO2 fixation. CaCO3 from the biomineralization was beneficially re-used in the H. pluvialis culture and triggered 178- and 522-fold increased biomass productivity and astaxanthin content, respectively, thanks to its anisotropic nature. The Ca2+-based productivity enhancement strategy was applied to large-scale culture which resulted improvement in overall bioprocess performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call