Abstract

Although elevating CO2 pressure facilitates electrochemical CO2 reduction reaction (CO2RR), the paired anodic oxygen evolution reaction (OER) can hardly gain the benefit due to its sluggish kinetics at near-neutral pH. Here, we replaced the OER with sulfite electrooxidation reaction (SOR) at near-neutral pH to realize a CO2/sulfite concurrent system, which can serve as a promising strategy for the dual treatments of CO2 and SO2 in flue gas. The anodic SOR reaction catalyzed by the non-noble nanoporous NiO supported on the nickel foam electrode exhibited a voltage saving by ∼1 V in contrast to the OER at 50 mA cm–2. On the other hand, BiOI-catalyzed cathodic CO2-to-formate conversion at 20 bar CO2 offered a remarkably broadened potential range and enhanced current density in contrast to the results tested at 1 bar CO2. An overall electricity-to-formate energy conversion efficiency of 65% for the CO2RR + SOR system was successfully obtained at a cell voltage of 1.8 V, which is 20% higher than that of the CO2RR + OER system. Based on these, an efficient and energy-saving full electrolysis system for concurrent electrolysis of CO2RR and SOR at 20 bar CO2 has been successfully constructed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call