Abstract

Motivated by advanced-generation signals and corresponding trends for multiband, broadband, and ultra-wideband transmitters, several models have recently been proposed for digital predistortion in a dual-band concurrent transmission. These state-of-the-art models assume that two frequencies of operation are uncorrelated and harmonic products can be filtered out. However, when the harmonic of one signal falls on the frequency band of another signal, it cannot be removed with filters. This paper proposes a 3-D harmonic memory polynomial based model for the dual-band concurrent transmission in the presence of harmonic interferences. The model is extracted and predistortion is implemented using a low-cost field-programmable gate-array-based system including a transmitter and a feedback receiver. Using the proposed model, a performance improvement up to 22 dB in terms of normalized mean square error and performance improvement up to 20 dB in terms of the adjacent channel power ratio is achieved compared to a conventional dual-band memory polynomial model not including harmonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.