Abstract

Tether-nets deployed from a chaser spacecraft are a promising solution to capturing space debris. The success of the one-shot capture process depends on the net’s structural dynamic properties, attributed to its physical design, and on the ability to perform an optimal launch and closure subject to sensing and actuation uncertainties. Hence, this paper presents a reliability-based optimization framework to simultaneously optimize the net design and its launch and closing actions to minimize the system mass (case 1) or closing time (case 2) while preserving a specified probability of capture success. Success is assessed in terms of a capture quality index and the number of locked node pairs. Gaussian noise is used to model the uncertainties in the dynamics, state estimation, and actuation of the tether-net, which is propagated via Monte Carlo sampling. To account for uncertainties and ensure computational efficiency, given the cost of simulating the tether-net dynamics, Bayesian optimization is used to solve this problem. Optimization results show that the mission success rate in the presence of uncertainties has increased from 75% to over 98%, while the capture completion time has almost halved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.