Abstract
This paper proposes a concurrent topology optimization method of macrostructural material distribution and periodic microstructure considering dynamic stress response under random excitations. The optimization problem is the minimization of the dynamic stress response of the macrostructure subject to volume constraints in both macrostructure and microstructure. To ensure the safety of the macrostructure, a new relaxation method is put forward to establish a relationship between the dynamic stress limit and the mechanical properties of microstructure. The sensitivities of the dynamic stress response with respect to the design variables in two scales, i.e., macro and micro scales, are derived. Then, the aforementioned optimization problem is solved by the bi-directional evolutionary structural optimization (BESO) method. Finally, several numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.