Abstract
This paper details the development of a planning algorithm for multiple co-located geostationary satellites to perform station keeping and momentum unloading maneuvers concurrently. The objective is to minimize the overall fuel consumption while guaranteeing a safe separation distance between the satellites within a specific geostationary slot, as well as managing their stored angular momentum to maintain their nadir pointing orientation. The algorithm adopts the leader-follower architecture to define relative orbital elements of the satellites equipped with four gimbaled on-off electric thrusters, and solves a convex optimization problem with inequality constraints, including momentum unloading requirements, to determine the optimal maneuvers. The proposed algorithm is verified, in terms of fuel consumption, constraints enforcement and satellites performance, using numerical simulations that take into account dominant perturbations in the geostationary environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.